The Herschel-SPIRE instrument and its in-flight performance*

نویسندگان

  • M. J. Griffin
  • G. J. White
  • N. Whitehouse
  • C. D. Wilson
چکیده

The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory‘s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194–671 μm (447–1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4′ ×8′, observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6′. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5–2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-flight calibration of the Herschel-SPIRE instrument*

SPIRE, the Spectral and Photometric Imaging REceiver, is the Herschel Space Observatory’s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) covering 194−671 μm (447−1550 GHz). In this paper we describe the initial approach taken to the absolute calibration of the SPIRE instrume...

متن کامل

SPS: a software simulator for the Herschel-SPIRE photometer

Aims. Instrument simulators are becoming ever more useful for planning and analysing large astronomy survey data. In this paper we present a simulator for the Herschel-SPIRE photometer. We describe the models it uses and the form of the input and output data. Methods. The SPIRE photometer simulator is a software package which uses theoretical models, along with flight model test data, to perfor...

متن کامل

Physics based calibration of the Herschel/SPIRE bolometers

The bolometers (and readout circuitry) in the SPIRE instrument on the Herschel Space Observatory are among the best understood and well characterised of any sub-mm astronomy instrument to date. SPIRE contains five arrays of NTD germanium spiderweb bolometers with up to 139 pixels per array. Their behaviour has been shown to be extremely stable as seen by repeated measurements in the years betwe...

متن کامل

Estimating hyperparameters and instrument parameters in regularized inversion Illustration for Herschel/SPIRE map making

We describe regularized methods for image reconstruction and focus on the question of hyperparameter and instrument parameter estimation, i.e. unsupervised and myopic problems. We developed a Bayesian framework that is based on the posterior density for all unknown quantities, given the observations. This density is explored by a Markov chain Monte-Carlo sampling technique based on a Gibbs loop...

متن کامل

The data processing pipeline for the Herschel SPIRE Fourier Transform Spectrometer

We present the data processing pipeline to generate calibrated data products from the Spectral and Photometric Imaging Receiver (SPIRE) imaging Fourier Transform Spectrometer on the Herschel Space Observatory. The pipeline processes telemetry from SPIRE observations and produces calibrated spectra for all resolution modes. The spectrometer pipeline shares some elements with the SPIRE photometer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010